Toán học là một môn học quan trọng và có mặt ở hầu hết các cấp học của chúng ta. Tuy nhiên do số lượng bài học quá nhiều nên đôi khi chúng ta lại quên đi những kiến thức cơ bản. Đặc biệt là những kiến thức ít áp dụng vào thực tiễn. Vậy trong bài viết hôm nay, chúng tôi sẽ nhắc lại một số thông tin liên quan đến cấp số nhân. Cùng tìm hiểu ngay nhé
Nội dung bài viết[Hiển thị]
Cấp số nhân (CSN) là một dãy số vô hạn hoặc hữu hạn tuần hoàn. Trong đó, kể từ số hạng thứ 2 trở đi, mỗi một số hạn đều bằng tích của số hạng đứng trước nó nhân cho một thừa số q không đổi. Và thừa số q này được gọi là công bội của dãy số
Nếu cho cấp số nhân với công bội q là (thì ta có công thức: . Và đây được gọi là dãy số truy hồi
Ví dụ: Dãy số sau đây: 3, 6, 12, 24, 48, 96, 192,... được gọi là một cấp số nhân với công bội q = 2.
Ta có: ,
Tiếp theo, với công bội q thuộc tập hợp số tự nhiên N, ta sẽ có 2 dãy cấp số nhân như sau
Ví dụ: dãy số 10, 5, , ,... là dãy số lùi vô hạn với công bội q =
Ví dụ: dãy số 5, 10, 20, 40, 80, 160,... là dãy số tăng vô hạn với công bội q = 2
Có thể bạn quan tâm: Thừa số là gì? Làm sao để phân tích một số thành các thừa số nguyên tố
Dựa trên định nghĩa về CSN đã biết như trên, ta có thể suy ra được một số tính chất cơ bản với công thức như sau
Công thức này được hình thành dựa trên định nghĩa ban đầu.
Công thức số hạng tổng quát
Ví dụ: Cho CSN với các số hạng như sau: 2, 4, 8, 16, 32,...
Ta có:
Vậy
Tương tự với công thức 1, dựa trên định nghĩa ban đầu, ta có thể hình thành biểu thức tính công bội khi đã biết 2 số hạng liên tiếp
Công thức: q =
Ví dụ: cho dãy số với 2 số hạng liên tiếp lần lượt là và . Vậy công bội q = =
Với công thức này, chúng ta có thể biết được số hạng tổng quát thông qua số hạng đầu tiên và công bội của dãy số.
Công thức:
Ví dụ: Cho một CSN có số hạng đầu tiên là 10, công bội là 3. Vậy ta có số hạng tổng quát của dãy số được trình bày dưới dạng như sau:
Đây là công thức duy nhất trong tính chất của dãy số giúp ta có được mối liên hệ giữa 2 số hạng liền kề với nhau. Cụ thể là, bình phương của một số hạng sẽ bằng tích 2 số hạng liền trước và liền sau của số hạng đó
Công thức:
Ví dụ: Cho CSC với các số hạng trong dãy theo thứ tự là 3, 9, 27, 81,...
Ta có: Vậy
Với công thức này, chúng ta sẽ biết được biểu thức liên hệ giữa 2 số hạng bất kỳ trong dãy số thông qua công bội cho trước.
Công thức:
Ví dụ: Cho dãy số với số hạng thứ 5 là 100, công bội q=2. Vậy số hạng thứ 8 của dãy sẽ là
Có thể bạn quan tâm: MPa và Bar là gì? Tìm hiểu công thức 1 MPa = Bar
Sau khi đã nắm rõ những kiến thức cơ bản, bạn cần tìm hiểu qua một số dạng bài tập để dễ hiểu và dễ nhớ hơn những kiến thức ở trên. Về cơ bản, bạn cần nắm chắc 3 dạng bài như sau
Đây là dạng toán cơ bản và đơn giản nhất của phần kiến thức này. Chúng ta chỉ áp dụng nguyên mẫu các công thức cho sẵn là được
Ví dụ: Tìm các số hạng của CSN biết
Cách giải:
Ta có: 243=1.q=3
Vậy CSN là 1, 3, 9, 27, 81, 243
Với dạng toán này, bạn chỉ cần nắm rõ 5 công thức cơ bản ở phía trên, từ đó thay số vào và tính toán là được. Và các thao tác chứng minh được tóm tắt qua 2 bước sau
Ví dụ: Cho CSN (. Chứng minh rằng
Cách giải
Vế trái: VT = (1)
Vế phải: VP = (2)
Từ (1) và (2) suy ra VT = VP
Đề bài thường sẽ cho sẵn 3 số hạng có đi kèm tham số chưa biết trước. Và chúng ta cần dựa trên tính chất liên hệ giữa 3 số hạng này để lập thành một dãy số hoàn chỉnh
Ví dụ: Tìm m để 3 số hạng sau đây lập thành một cấp số nhân m-2, m-4, m+2
Cách giải
Theo công thức 4, ta có 8m = 20 m = 2,5
Vậy CSN đã cho là 0,5; -1,5; 4,5
Vậy là ReviewAZ vừa giới thiệu cho bạn một số kiến thức cơ bản về cấp số nhân. Đây là những kiến thức không quá khó, tuy nhiên lại rất quan trọng trong công việc học tập của mỗi chúng ta. Vì vậy hãy tham khảo và ôn luyện thật kỹ để bổ sung cho kho tàng kiến thức của mình nhé
Có thể bạn quan tâm: Lũy kế là gì? Giải đáp tất tần tật thông tin về lũy kế
Với những người thường xuyên sử dụng các dịch vụ tiện ích để gửi tiết kiệm chắc chắn không quá xa lạ với Credit. Vậy...
Việc nắm rõ giới từ là rất quan trọng, ngữ pháp này còn rất cần thiết để quá trình giao tiếp trơn tru và hiệu...
Trong kinh doanh, đặc biệt là quá trình phân phối hàng hóa, vendor là một thuật ngữ đã quen thuộc. Đây được xem là một...
Ngày nay, nhu cầu mở rộng thị trường và kinh doanh của các cá nhân, tổ chức ngày càng lớn. Các công ty, doanh nghiệp...
Account đã xuất hiện trong nhiều lĩnh vực song không phải ai cũng có thể giải thích chi tiết, cặn kẽ về định nghĩa này....
Từ ngữ Việt Nam là cả một kho tàng phong phú, đa dạng. Có rất nhiều từ tuy khác nhau về âm tiết nhưng lại...